6.3 Notes

6.3: Multiplication and Division of Rational Numbers Definition: If $\frac{a}{b}$ and $\frac{c}{d}$ are rational numbers, ther $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$. Example: Draw a figure to represent $\frac{1}{2} \cdot \frac{3}{4} = \frac{3}{8}$.	Example: Draw a figure to represent $\frac{2}{3} \cdot \frac{3}{5} = \frac{2}{5}$.
Example: Calculate $\frac{27}{62} \cdot \frac{8}{54}$.	Example: Calculate $\frac{18}{44} \cdot \frac{55}{27}$.
Fact: The rational numbers over multiplication have the closure, commutative, and associative properites. The following properties also hold. Identity:	Example: Calculate the following. (a) $3\frac{1}{3} \cdot 3\frac{1}{3}$
Inverse:	
Zero Multiplication Property: Distributive:	

6.3 Notes

(b)
$$2\frac{2}{3} \cdot 1\frac{1}{4}$$

Definition: If
$$\frac{a}{b}$$
 and $\frac{c}{d}$ are rational numbers with $\frac{c}{d} \neq 0$, then $\frac{a}{b} \div \frac{c}{d}$ is the unique rational number $\frac{e}{f}$ such that $\frac{c}{d} \cdot \frac{e}{f} = \frac{a}{b}$.

We will not be studying a model for this in class, but look at
$$p.\,390$$
 for some ideas of how to teach this.

Example: Show that
$$\frac{2}{3} \div \frac{3}{4} = \frac{8}{9}$$
.

Theorem: If
$$\frac{a}{b}$$
 and $\frac{c}{d}$ are any rational numbers and $\frac{c}{d} \neq 0$, then
$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}.$$

Proof:

Example: Compute $\frac{4}{5} \div \frac{12}{5}$ using Keep Change Flip with one of the explanations from before.